We report a novel humidity sensor featuring vertically oriented arrays of ReS2 nanosheets grown on an interdigitated gold electrode by chemical vapor deposition. The vertical orientation of the nanosheets is important since it maximizes the exposed surface area for water adsorption/desorption. We find that the resistance of the ReS2 film decreases sensitively with increasing relative humidity, which we attribute to charge transfer from the absorbed H2O molecules to the n-doped ReS2 nanosheets. In addition to high sensitivity, the ReS2 sensors exhibit fast response/recovery time and excellent reversibility with minimal hysteresis. Moreover, our fabrication approach involving the direct (1-step) growth of the ReS2 films on an interdigitated electrode (without any transfer using wet chemistry or lithography) greatly simplifies the device architecture and has important practical benefits for the low-cost and scalable deployment of such sensor devices.